首页  >  科研动态  >  正文
科研动态
齐鲁荷(博士生)、施晓文和陈朝吉的论文在ACS NANO刊出
发布时间:2023-04-14 14:39:53     发布者:易真     浏览次数:

标题: Bioinspired Multiscale Micro-/Nanofiber Network Design Enabling Extremely Compressible, Fatigue-Resistant, and Rapidly Shape-Recoverable Cryogels

作者: Qi, LH (Qi, Luhe); Wang, S (Wang, Sen); Chen, L (Chen, Lu); Yu, L (Yu, Le); Guo, XJ (Guo, Xiaojia); Chen, MX (Chen, Mingxiang); Ouyang, WE (Ouyang, Wengen); Shi, XW (Shi, Xiaowen); Chen, CJ (Chen, Chaoji)

来源出版物: ACS NANO DOI: 10.1021/acsnano.2c10462 提前访问日期: MAR 2023

摘要: Cryogels with extreme mechanical properties such as ultrahigh compressibility, fatigue resistance, and rapid recovery are attractive in biomedical, environmental remediation, and energy storage applications, which, however, are difficult to achieve in man-made materials. Here, inspired by the multiscale macro-/microfiber network structure of spider web, we construct an ultraelastic chitosan cryogel with interconnected hybrid micro-/ nanofibers (CMNF cryogels) via freeze-induced physicochemical cross-linking. Chitosan chains are directionally assembled into high-aspect-ratio microfibers and nanofibers under shear-flow induction, which are further assembled into an interconnected three-dimensional (3D) network structure with staggered microfibers and nanofibers. In this multiscale network, nanofibers connecting the microfibers improve the stability, while microfibers improve the elasticity of the CMNF cryogels through long-range interaction. The synergy of the two-scale fibers endows the CMNF cryogel with extraordinary mechanical properties in comparison to those assembled with single-scale fibers, including its ultrahigh ultimate strain (97% strain with 50 cycles), excellent fatigue resistance (3200 compressing-releasing cycles at 60% compression strain), and rapid water-triggered shape recovery (recovering in similar to 1 s). Moreover, the fibrous CMNF cryogel shows excellent functionalization capability via the rapid assembly of nanoscale building blocks for flexible electronics and environmental remediation. Our work thereby demonstrates the potential of this bioinspired strategy for designing gel materials with extreme mechanical properties.

作者关键词: cryogel; chitosan; bioinspired; biomass; fatigue-resistant

地址: [Qi, Luhe; Chen, Lu; Yu, Le; Guo, Xiaojia; Shi, Xiaowen; Chen, Chaoji] Wuhan Univ, Sch Resource & Environm Sci, Hubei Biomass Resource Chem & Environm Biotechnol, Wuhan 430079, Peoples R China.

[Wang, Sen; Chen, Mingxiang; Ouyang, Wengen] Wuhan Univ, Sch Civil Engn, Dept Engn Mech, Wuhan 430072, Hubei, Peoples R China.

通讯作者地址: Shi, XW; Chen, CJ (通讯作者)Wuhan Univ, Sch Resource & Environm Sci, Hubei Biomass Resource Chem & Environm Biotechnol, Wuhan 430079, Peoples R China.

Ouyang, WE (通讯作者)Wuhan Univ, Sch Civil Engn, Dept Engn Mech, Wuhan 430072, Hubei, Peoples R China.

电子邮件地址: w.g.ouyang@whu.edu.cn; shixw@whu.edu.cn; chenchaojili@whu.edu.cn

影响因子:18.027


信息服务
公司网站教师登录 公司办公电话 集团信息门户登录

版权所有 © mk体育
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn